

14 COEFFICIENTE C SI ANNULLA E L'EQUAZIONE DIVENTA SPURIA SUPPONIAND QUINDI DI VOLERLA RISOLUERE COME EQUAZIONE DI 2º GRADO LA PRIMA OSSERVAZIONE DA FARE SUL PARAMETRO K E CHE NON POTRA ESSERE PARI A -6 PERCHE COME ABBIANO VISTO SE IL COEFFICIENTE NULLO NON E UMA EQUAZIONE DI Z GRADO au IN DI K #1-16 COST SE CALCOLIAMO (DELTA) CONSIDERANDO COSTANTA OTTENIANO! CIDE 400 = K+4-4K-4(K+3K+6K+18) =-3K-40K +68 CIDE UNA NUOVA FQUAZIONE DI 2 GRADO NEILA QUALE K E L'INCOCNITA A QUESTO PUNTO UNA ULTERIORE OSSERVAZIONE SUK CHE SI POTREBBE FARE AD ESEMPIO E QUELLA CHE SE 1 =0 COME SAPPIANO LA NOSTRA EQUAZIONE PARATIETRICA AVRA SOLUZUMI COINCIDENTI, RUINDI RISOLVENDO =)-3k2-40k-68=0 1 = 0

PODSIAND TROVARE I VALORI DI R PER I QUALI LE JOHN BLILLEQUAZIONE SIANO COINCIDENTI UGUALI OPPURE SFRUTTANDO LE PROPRIETTA DELLE RECAZIONI TRA I COEFFICIENTI Q 6 & POSSIANO DETERMINARE 14 VALORF DI K AFFINCHE LA SORMA DELLE SOLUTIONI DELL'EQUAZIONE PARA METRICA SIA UQUACE AD UNDATO NUKERON PERCHE SAPENDO CHE SEARBIAND DX HC FO CON DO ALLORA Ь QUINDI IMPONENDO I VALORI DIK AFFINCHE > O RISOLVIIAMO LEQUAZIONE NK = NUMERO THE NEL NOSTRO ESEMPIO SARA (K+6) NUHERON K-2 IN CONCLUSIONE QUINDI AL COSPETTO DI UNA EQUAZIONE DI 2º GRADO PARAMETRICA, BISOGNA CONSIDERARE I SUOI COEFFICIENTI F LE LORD RELAZIONI FACEURS LE DOVUTE OSSERVAZIONI SUL (DISUL.) PARAMETRO/I N ESSI CONTENUTI

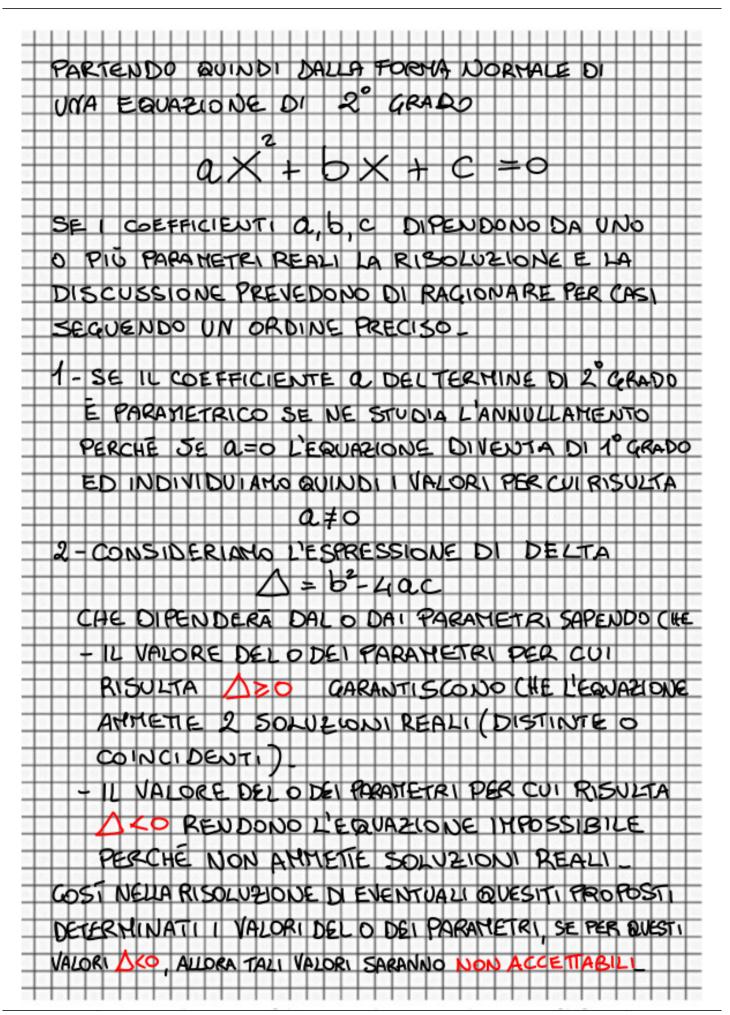
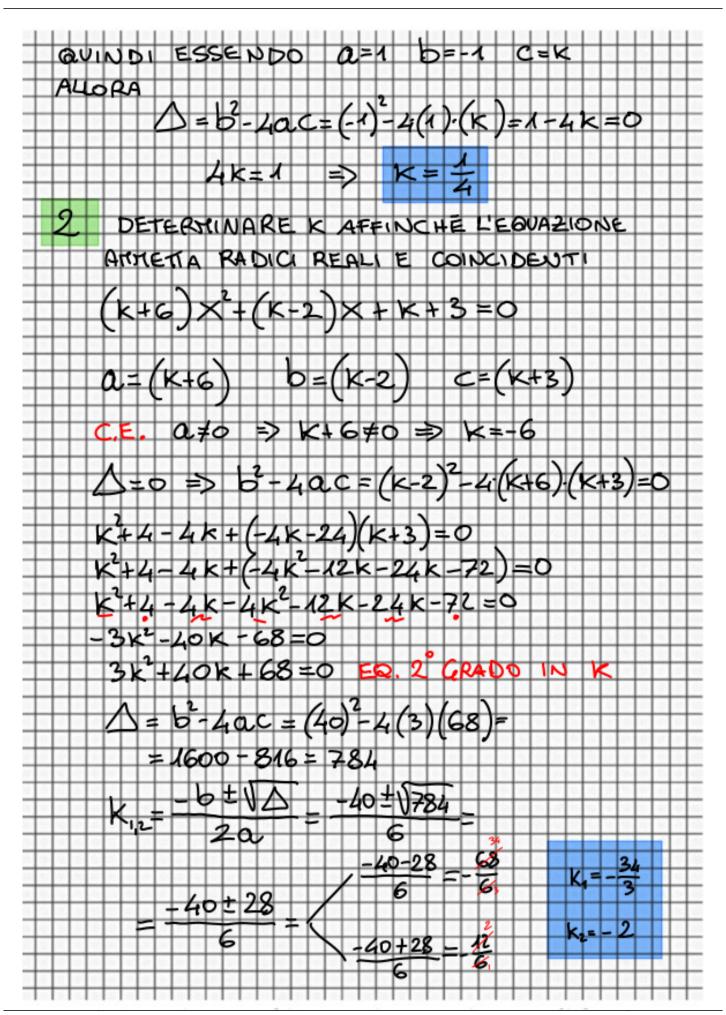
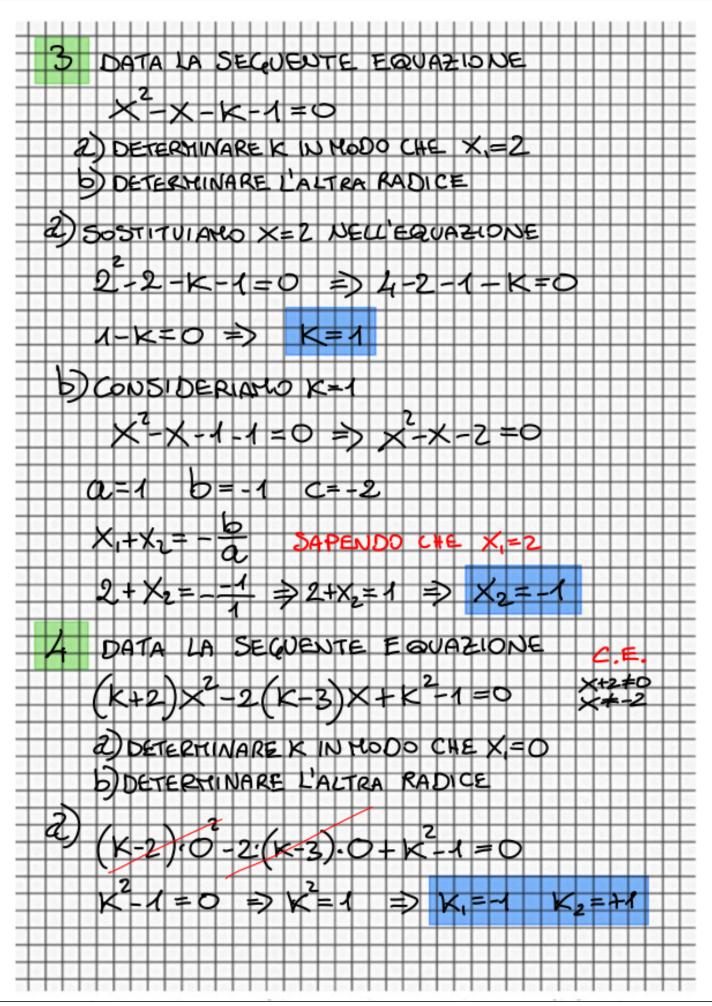
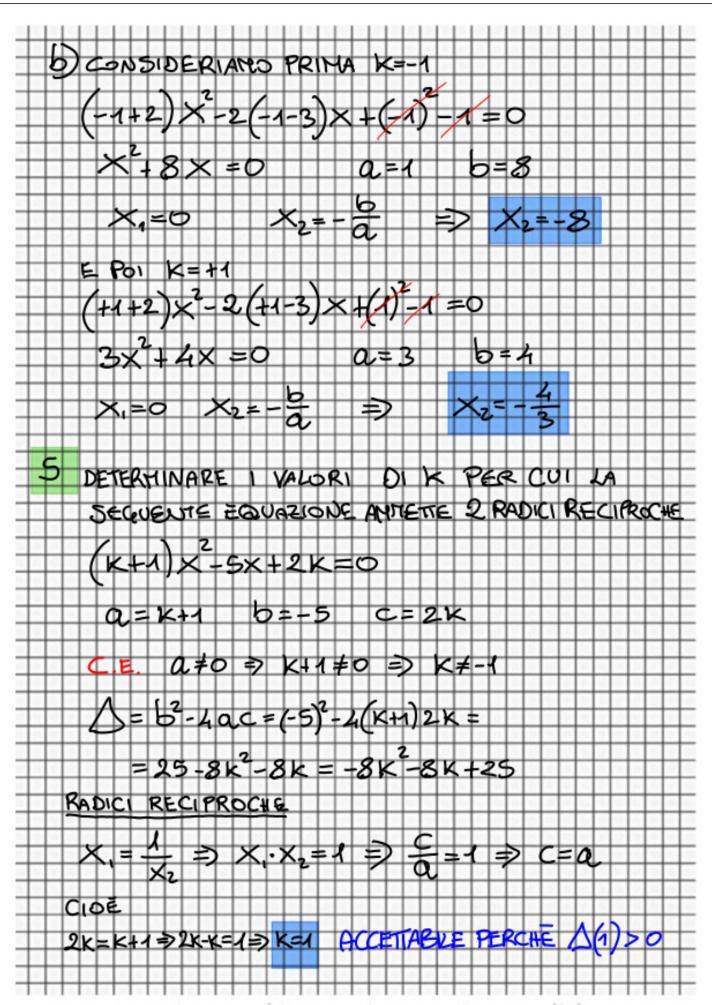


TABELLA CONDIZIONI	DI RISOLUZIONE
CONDIZIONE	SOLUZIONE
DETERMINARE QUANDO UMA RADICE É UQUALE A Ø (650)	SOSTITUIRE NELL'EQUAZIONE X=0
LA SOMMA DELLE RADICI È UGUACE AD UN NUMERO N	$x_1 x_2 = -\frac{b}{a} \Rightarrow -\frac{b}{a} = N$
UGUALE AD UN NUMERO N	$X:X_1=\frac{c}{a} \Rightarrow \frac{c}{a}=N$
LE RADICI SONO OPPOSTE XI = - X2	X,+X2=0 ⇒ -=0 ⇒ b=0
LE RADICI SONO RECIPROCHE	$X_i \times_{i=1}^{i=1} \Rightarrow C=a$
LE RADICI SONO ANTIRECIPROCHE	$X : X_1 = 1 \Rightarrow C = -a$
LE RADICI SONO CONCORDI	X;X,>0 => => => c>a
LE PADICI SONO DISCORDI	X.X.<0 => => c < a
LE RADICI SONO COINCIDENTI X, = X,	1 d=0 => 6-4ac=0
LE RADICI 50NO REALI	120 => 6-4ac≥0
LE RADICI SONO REALI E DISTINTE	100 => 10 -4ac>0
LE RADICI NON SONO REALI	△<0 => b²-4ac<0

L'EQUAZIONE É PURA ax+c=0	b=0
L'EQUAZIONE É SPURIA QX2+6X=0	C=O
LA SOMMA DEI RECIPROCI DELLE RADICI É CRUACE A UN NUMERO N	☆·☆= ※·+※= = N ⇒ ===N ⇒ - == N
LA SOMMA DEI QUADRATI DELLE RADICI É UGUALE A UM NUMERO N	X+Xi=(X+Xi)-2××=ル ⇒ (岩)-2岩=N
LA SOMMA DEI QUIADRATI DEI RECIPROCI DELLE RADICI È UGUALLE AD N	(x, x, x) = (x, x, x) = 2x, x = N (x, x, x) (x, x, x) = N => (-2) 2 - 2(2) = N (2)
LA SONMA DEI CUBI DELLE RADICI E UGUALE AD N	x +x = (x,+x,)(x,+x,2-x,x,2) = N => (-=) - 3-= (-=)=N
JA SOMMA DEI CUBI DEI RECIPROCI DEUERADICI È UGUALE AD N	(1+√2=×1+×2=N ×1+√2=×1+×2=N ⇒ (-2)-3 €(-2)=N(2)
UNA RADICE È MULTIPIA DELL'ALTRA SECONDO UN FATTORE N	(X=N:X1 b 7:X+X1=-a X:X2= a
VEDIANO ALCUNI ESEMPI	
1 DETERMINARE K AFFIN RADICI REALI E COINC X-X+K=0	CHĒ L'EQUAZIONE AMHETTA IDENTI
	ESSERE =0







INFAMI

$$A = -8 \text{ k}^2 - 8 \text{ k} + 25 = -8(4)^2 - 8(4) + 25 = -8 + 8 + 25 = -16 + 25 = +9 > 0$$

6 DETERMINARE I VALORI DI K PER CUI LA SEGUENTE.

EQUAZIONE AMMETTE 2 RADICI RECIPROCHE

 $(k+3)x^2 - (2k-1)x + 3(k-1) = 0$
 $a = k+3$ $b = 1 - 4 \text{ k}$ $c = 3k-3$

CE. $a \neq 0 \Rightarrow k+3 \neq 0 \Rightarrow k \neq -3$
 $A = k^2 - 4a c = (1-4k)^2 - 4(k+3)(3k-3) = 26k^2 + 8k + 1 - 12k^2 + 12k - 36k + 36 = 24k^2 - 32k + 37$

RADICI RECIPROCHE

 $X_1 = \frac{1}{2} \Rightarrow X_1 \cdot X_2 = 1 \Rightarrow \frac{1}{2} \Rightarrow C = 0$
 $3k-3 = k+3 \Rightarrow 3k-k=3+3 \Rightarrow 2k=6 \Rightarrow k=\frac{6}{2}$
 $k=3$ NION ACCETTABILE PRECIE $A(3) < 0$

INFART:

 $A = 4k^2 - 32k + 37 = 4(3)^2 - 32(3) + 37 = 26 - 96 + 37 = -23 < 0$

DETERMINARE I VALORI DI K PER CUI LA SEGUENTE E 2UAZIONE AMMETIE 2 RADICI RECIPROCHE

 $3x - 2(k+1)x + k+1 = 0$
 $a = 3 \Rightarrow b = -2k-2 = c = k+1$

